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LETTER TO THE EDITOR 

Q-ball solutions in 1 + 1 dimensions for a class of 
S0(2)-invariant potentials 

C Nagaraja Kumar and Avinash Kharel- 
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India 

Received 13 August 1987, in final form 26 October 1987 

Abstract. We obtain exact expressions for the ( I  + 1 )-dimensional Q ball solutions for a 
wide class of SO(Z)-invariant potentials of  the form +/~’d’ - :g2@”+*  +&A*$’“+* where 
f l = l , 2 , 3  ) . . . .  

Some time ago Coleman (1985) has shown the existence of the so-called ‘Q balls’ in 
a large family of field theories in 3 + 1 dimensions when one is near the first-order 
phase transition point. Actually, his arguments are quite general and Q balls could 
in fact exist in arbitrary number of dimensions. For example, in a slightly different 
context, Lee (1976, 1981) has discussed a similar solution in 1 + 1 dimensions and has 
explicitly written down the Q-ball solution for the SO(2)-invariant potential ; p 2 d 2  - 
ig244+&A246. Recently, Cerver6 and EstCvez (1986) have also written the Q-ball 
solution in 1 + 1 dimensions for the S0(2)-invariant potential 4p242-ig24’+&A244. 

The purpose of this letter is to construct exact Q-ball solutions for a class of 
SO(2)-invariant models characterised by the potential 

(1) 
( p 2 ,  g2, A 2 > O ) .  It may be noted here that the potentials considered in Lee (1976) and  
Cerver6 and  EstCvez (1986) are special cases of this general potential for the cases 
n = 2  and n = 1, respectively. 

Let us consider the ( d  + 1)-dimensional field theory of two real scalar fields 4 )  and 
42 defined by the Lagrange density 

U (  4 )  = $,,?42 -Agz4f7+? + ~ . A Z ~ ? P I + ~  

I2 n = 1 , 2 , 3 , .  , . 

L = $(8 ,41)~+4(3 ,42) ’ -  U ( 4 )  (2) 
where 4 = (4:+4i)”2 and U ( 4 )  is as given by equation (1). This L has a global 
SO( 2) symmetry; the associated conserved current is 

(3) 
Let us further assume that the parameters in U ( 4 )  have been so chosen (Lee 1976) 
that there is a Q-ball solution with a finite energy E and finite charge Q of the form 

j ,  = 4d,dz - 4 ~ 3 ~ 4 ~ .  

+ Address until 15 June 1988: Department of Physics, University o f  Illinois at Chicago, Chicago, I L  60680, 
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such that ( E  - Q p )  < 0. Here p is defined by 

= ( 2  U /  4') ,$ = U"(0) .  

The function 4 ( r )  can then be shown to satisfy the field equation 

It is not difficult to see that the energy and charge of the Q-ball solution are given by 

E = dr[4w2+2(r)+i(V+)2+ U(+)]  J 
Q = w  d r 4 2 ( r ) .  

From here it follows that both +( r) and V 4  must vanish sufficiently rapidly as r + m 
so as to have finite Q and E. 

Let us now construct Q-ball solutions in 1 + 1 dimensions for the class of potentials 
given by equation (1). For any even (odd) n, this potential has an absolute minimum 
at 4 = 0 and two (one) local minima at 

provided 

4 ( n + l )  
( n + ~ ) ~  

<c2(=g4/6A2p2)< 1 .  

On the other hand, at c2 = 1 this potential has three (two) degenerate minima and 
hence two (one) kink solutions of the form 

- t2 - &(x) =[(g2/2A2)(1 *ttanh~npx)]'l" 41 
cos Q sin a 

Q being a constant. The corresponding kink mass is 

On the other hand, when c2 is as given by equation (10) we have the Q-ball solution 

where 

b = C( 1 - ~ ~ / p ~ ) - " ~ .  

It may be noted here that the minimum of 2U(+) /+'  is at 4: = g2/A2 and 

w;=[2U(4) /+2] ,&=p2( l  - c 2 )  (15)  
so that indeed wo < w < p. From the Q-ball solution (13) it is immediately clear that 
+,(x) dies off exponentially fast as x + f a .  Further, qb,(x=O) is finite while 
(d&,(x)/dx),=o vanishes (for any n) ,  so that E and Q are indeed finite for the whole 
class of Q-ball solutions as given by equation (13). 
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As expected, the solution (13) for n = 1 and 2 reduces to the ones given by Cervero 
and EstCvez (1986) and Lee (1976), respectively. For the n = 2 case, the Q and E can 
be shown to be (note a < c2 < 1 )  

Let us now discuss the question of energy minimisation as well as charge stability 
of the solution (13). Since for this solution both E and Q are functions of a single 
parameter b, E is an implicit function of Q. As a result we find that, except when 
n = 1 ,  for our solution E is not minimised for a fixed charge Q. For the special case 
of n = 1, it turns out that both E and Q have their minima and maxima for each value 
of c at the same values of b (Cerver6 and EstCvez 1986). Our solutions are, however, 
charge stable since it turns out that for these solutions E < Q p  for any b( 1 < b <a) 
provided c < c,,,~ where cCrit is close to one, For example, for n = 1,  cCrit = 0.998 while 
for n = 2, cCrit = 0.984. 

Before concluding this letter we would like to raise the interesting but difficult 
question of the stability of the Q-ball solutions under small perturbations. We would 
like to make it clear at the outset that at present we are unable to answer the question 
in any definite way. Consider the stability of the Q-ball solution (equation (4)) under 
small perturbations SI  and S2 defined by (Coleman 1985) 

cos wt  -sin ut)( 4'; a I )  
= (sin wt cos w t  

where 4, is the Q-ball solution satisfying the field equation (6). On inserting equation 
(18) into the equations of motion for 4, and d2,  retaining only first-order terms in SI  
and S 2  and using equation (6) we get 

d2 d 
dt2 ' dt  
- 8  -2w-S2-V26, + (U; - w2)S1 = 0 

d2 d 
d t2  d t  
- 8  +2w-S,-V2S2+ 

where U, denotes U ( + )  evaluated at 4 = &,(x). Now the small perturbations 6 ,  and 
a2 can be written as 

S,(x, t )  = exp(iw,t)S,(x) (21) 

S,(x, t )  = exp(iw,t)S,(x). (22) 
Then we have the following two coupled equations: 

[ - ~ ~ + ( ~ ~ - w ~ - w ~ ) ] ~ , ( x ) = 2 i w w , ~ ~ ( x )  

[-V'+(vy4, -w2-w:)]S4(x) = -2iww,S3(x). (24) 
In order to prove the stability of the Q-ball solution one has to prove that there is no 
solution to the coupled equations (19) and (20) with w l  = A  -iB, A and B being real 
and B > 0. We have been unable to solve the coupled equations and answer this 
question in any definite way. It may, however, be worthwhile to point out that there 
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is an exact solution to the coupled equations in the case when U ,  = 0; the solution has 
the form 

(25a)  
d d  d 2 2 :  &(x) =-!(r)PL(cos 6 )  
d r  ( i )  

d 
dx ( i i )  d = 1: S,(x) =-4,(x) ( 2 6 ~ )  

84(x) = &(XI. (266)  

We notice that S4(x) and S,(x) are nodeless except when d = 1, in which case S4(x) 
is nodeless while S,(x) is not. As remarked above, this does not help in settling the 
question of stability of the Q-ball solutions. Finally, notice that one can decouple the 
two coupled equations (equations (19) and ( 2 0 ) )  and obtain uncoupled fourth-order 
differential equations. 

One of us (AK) is grateful to S M Roy for pointing out a mistake in the original draft. 
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